United States Patent

Lam et al.
(10) Patent No.: US 7,939,711 B2
(45) Date of Patent:
(54) ABIOTIC STRESS TOLERANCE CONFERRED BY J-DOMAIN CONTAINING PROTEINS
(75) Inventors: Hon-Ming Lam, Shatin (HK); Samuel Sai Ming Sun, Shatin (HK); Gui Hua Shao, Beijing (CN)

Assignee: The Chinese University of Hong Kong, Hong Kong (CN)
(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 859 days.

Appl. No.: 11/852,992
(22) Filed:

Sep. 10, 2007
Prior Publication Data
US 2008/0109920 A1
May 8, 2008

Related U.S. Application Data

(60) Provisional application No. 60/843,943, filed on Sep. 11, 2006.
(51) Int. Cl.

C12N 15/82 (2006.01)
(52) U.S. Cl. \qquad 800/278; 435/468
(58) Field of Classification Search \qquad None See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS
$\begin{array}{lllll}\text { 2004/0031072 } & \text { A1** } & \text { 2/2004 } & \text { La Rosa et al. } & \text {.............. 800/278 } \\ \text { 2005/0251879 } & \text { A1 } & 11 / 2005 & \text { Hofius et al. } & \\ \text { 2009/0126039 A1* } & 5 / 2009 & \text { Sanz Molinero } & \text {............ } 800 / 278\end{array}$
FOREIGN PATENT DOCUMENTS

	2001078603	$3 / 2001$
JP	5053	B
LT	$9 / 2003$	
WO	WO-01/17332	$3 / 2001$

OTHER PUBLICATIONS
Seki et al. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. (2001) The Plant Cell; vol. 13; pp. 61-72.*

Miernyk, J. A. The J-domain proteins of Arabidopsis thaliana: an unexpectedly large and diverse family of chaperonse. (2001) Cell Stress and Chaperones; vol. 6; pp. 209-218.*
Federoff and Ehrhardt-NASC; The European Arabidopsis Stock Center (2004-evidenced by AGR Insert Page.*
Arabidopsis Genome Resource (AGR) Insert page, JIC Inserts. (2004); pp. 1-3.*

Robinson et al. New introductions of drought tolerant plant materials for parking lots and highway medians. (1994) Proceedings of the 107th Annual Meeting of the Florida State Horticultural Society; pp. 193-196.*
Zhang et al. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. (2001) Nature Biotechnology; vol. 19; pp. 765-768).*
Wang et al. Rold of plant heat-shock proteins and molecular chaperones in the abiotic stress response (2004) Trends in Plant Science; vol. 9; pp. 244-252.*
Baszczynski et al., Maydica (1997) 42:189-201
Bukau and Horwich, Cell (1998) 92:351-366.
Cyr et al., J. Biol. Chem. (1994) 269:9798-9804.
Ellis, Nature (1987) 328:378-379.
Futamura et al., Plant and Cell Physiology (1999) 40:524-531.
Ham et al., Plant Cell (2006) 18:2005-2020.
Hemmingsen et al., Nature (1988) 333:330-334.
Hennessy et al., Cell Stress \& Chaperones (2000) 4:347-358
Hwang et al., Journal of Biosciences (2005) 30:657-667.
Lee et al., Plant Cell (1994) 6:1889-1897.
Lee et al., Plant Journal (1995) 8:603-612.
Lithuanian Patent Document No. LT 5053B, date published on Sep. 25, 2003 (English abstract retrieved from Delphion on Jan. 17, 2008). Liu et al., Plant Physiology and Biochemistry (2006) 44:380-386.
Miernyk, Cell Stress \& Chaperones (2001) 6:209-218.
Nguyen et al., Mol. Gen. Genomics (2004) 272:35-46.
Sato and Yokoya, Plant Cell Reports (2007) DOI10.1007/s00299-007-0470-0.
Swindell et al., BMC Genomics (2007) 8:Art No. 125.
Wang et al. Trends in Plant Science 2004 9:244-252.
Wise, BMC Bioinformatics (2003) 29:52-70.
Zhu et al., Plant Cell (1993) 5:341-349.

* cited by examiner

Primary Examiner - Cathy Kingdon Worley
(74) Attorney, Agent, or Firm - Morrison \& Foerster LLP

(57)

ABSTRACT

The invention describes a method of enhancing the expression of nucleotide sequences encoding proteins that comprise at least a DnaJ-type J-domain, in particular GmDNJ1, in plants or plant cells. Overexpression of the proteins protects plants or plant cells from salinity, osmotic, or dehydration stress.

5 Claims, 12 Drawing Sheets

Figure 1. Northern blot analysis of GmDNJI under salt stress

Col-0 V7 A-3-4 M-3-1 D-3-2 P-3-6

Figure 3. Northern blot analysis of the GmDNJI transgene in the four Arabidopsis transgenic lines

Figure 4. Appearance of Col-0, ASN1 (as a negative transgenic control), and the two GmDNJI transgenic lines treated with 15% PEG (a) and 500 mM NaCl (b).

Figure 5. Fresh weight of wild type and transgenic Arabidopsis lines treated with 500 mM NaCl or 15% PEG.

Figure 6. Northern blot analysis of the $G m D N J 1$ transgene in transgenic rice
(a)

(b)

Figure 7. Appearance of GmDNII transgenic lines (segregating population) (a) and wild type rice (b) on a field with high salt contents.

Figure 8. Appearance of untransformed and transgenic rice lines under dehydration stress
(a)
(b)
Figure 9. Survival rates of untransformed and transgenic rice lines under dehydration stress
(a)
ลa
Figure 10. Fresh weight of untransformed and transgenic rice lines under dehydration stress

SgBAA35121

 I: J-domain

III: Cysteine-rich domain
II: Gly cine/Pheny Ialanine-rich domain
IV: Uncharacterized C-terminal domain
*** HDP motif of J domain
EXXCXGXG motif of cy steine-rich domain

Figure 11a. Comparison of the amino acid sequence of GmDNJI to known DnaJ proteins.

Figure 11b. Chaperone activity of GmDNJ1 expressed as relative activity of heatdenatured luciferase.

ABIOTIC STRESS TOLERANCE CONFERRED BY J-DOMAIN CONTAINING PROTEINS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority from U.S. Ser. No. 60/843, 943 filed 11 Sep. 2006. The contents of this document are incorporated herein by reference.

REFERENCE TO SEQUENCE LISTING SUBMITTED VIA EFS-WEB

The entire content of the following electronic submission of the Sequence Listing via the USPTO EFS-WEB server, as authorized and set forth in MPEP $\S 1730$ II.B.2(a)(C), is incorporated herein by reference in its entirety for all purposes. The Sequence Listing is identified on the electronically filed txt file as follows:

File Name	Date of Creation	Size (bytes)
549072000400 Seqlist.txt	Nov. 20, 2007	23,509 bytes

TECHNICAL FIELD

The invention relates to methods to confer tolerance to abiotic stress conditions, such as salinity, osmotic, and dehydration stress by enhanced expression of proteins with J-domains, in particular, DnaJ-type proteins.

BACKGROUND ART

Seed maturation proteins, or late embryogenesis abundant (LEA) proteins, are produced in abundance during the late drying phase of seed development. Most LEA proteins accumulate in seeds or vegetative tissues that were exposed to exogenous abscisic acid or that undergo abiotic stress caused by salinity or dehydration. Some LEA proteins confer salt and dehydration tolerance in transgenic plants, probably by hydrating macromolecules, sequestering ions and renaturing unfolded proteins.

Using suppression subtractive techniques, nine genes were found to be more highly expressed under abiotic stress conditions than under normal conditions. One of them (GmDNJ1) shared 99\% nucleotide sequence homology to Glycine max seed maturation protein PM37 (GmPM37) deposited in GenBank as AF 169022, which is a DnaJ homolog. As shown in FIG. 11 a, it contains the characteristic components of DnaJ including the conserved N -terminal J-domain, a glycine/phenylalanine rich domain, a domain that includes a (CXXCXGXG) $)_{4}$ (SEQ ID NO:1) zinc finger type motif and an uncharacterized C-terminal domain. (Cyr, D. M., et al., J. Biol. Chem. (1994) 269:9798-9804, Hennessy, F., et al., Cell Stress \& Chaperones (2000) 4:347-358). GmDNJ1 did not resemble any LEA proteins.

DnaJ-like proteins are believed to serve as chaperone or co-chaperone proteins principally by aiding the chaperone function of Hsp70s. Hsp 70 is one of many heat shock proteins originally found to occur in Drosophila larvae in response to elevated temperatures. Heat shock proteins in general, while they may be produced either constitutively or under stress conditions, are believed, to play a chaperone role.

DnaJ-like proteins are defined by a conserved "J" region of approximately 73 amino acids (based on the originally disclosed E. coli protein, typically occurring toward the N-terminus of the protein (Hennessy, F., et al., supra). This domain is slightly shorter in the eucaryotic counterparts. As noted by Hennessy, et al., DnaJ-like proteins have been classified as: Type I which contain similarity to DnaJ over all domains, including the J-domain, the glycine-phenylalanine rich domain, and the (CXXCXGXG) 4 (SEQ ID NO:1) motif; Type II which contain the J-domain and the glycine-phenylalanine rich region; and Type III which contain only the J -domain. These groups have been renamed A, B and C , respectively.

The J-domain is required to include the triplet histidine-proline-aspartic (HPD) and also contains a number of other highly conserved regions. Hennessy, et al., (supra) in FIG. 3 provides detailed comparison of the J-domains of a number of DnaJ-like proteins indicating greater consensus in these regions among proteins of Types I and II than of Type III.
Miernyk, J. A., Cell Stress \& Chaperones (2001) 6:209218 using analysis of the genome and EST profiles of Arabidopsis thaliana shows that the genome encodes 89 J -domain containing proteins which correspond to varying levels of EST's. Of these, only one appears to be highly expressed; it is a Type III DnaJ-like protein. No analysis of actual protein levels was performed.

DnaJ expression has been reported to be associated with salt and dehydration tolerance in plants. Zhu, et al, Cell (1993) 5:341-349 showed that the expression of a DnaJ homologue from the higher plant Atriplex nummularia (ANJ1) was induced in plant cell culture under salinity stress. Recently, Nguyuen, et al., Mol. Gen. Genomics (2004) 272: 35-46 developed a marker for mapping of quantitative trait loci (QTL) regions for dehydration tolerance in rice, which was shown to be similar to Zea mays DnaJ-related protein (ZMDJ1), which was induced by heat stress (Baszczynski, et a1., Maydica (1997) 42:189-201). Although these studies reported the induction of DnaJ homologue under salt and dehydration stresses, no characterization of the effect of ANJ1 and ZMDJ1 on salt or dehydration tolerance was reported.
A group of seed maturation proteins includes small heat shock proteins (sHsps), but does not include DnaJ or Hsp40 (Wise, BMC Bioinformatics (2003) 29:52-70). Only GmPM37 (GmDNJ1) has been reported as a DnaJ-like seed maturation protein. The deduced protein sequence showed that GmDNJ1 contains the conserved motifs of DnaJ, and has a predicted molecular weight similar to common DnaJ proteins (Hdj1: 38 kDa ; Ydj1: 45 kDa ; $\mathrm{Hsp} 40: 41 \mathrm{kDa}$).

The present applicants are not aware of any reports describing the functional role of DnaJ proteins in conferring tolerance in plants to abiotic stress except heat shock.

DISCLOSURE OF THE INVENTION

The invention provides methods to confer tolerance on higher plants against salinity, osmotic, and dehydration stress by employing expression systems for proteins that contain J-domain consensus sequences and preferably also contain glycine/phenylalanine domain and (CXXCXGXG) 4 (SEQID NO:1) sequences characteristic of DnaJ proteins.

Thus, in one aspect, the invention is directed to a method to protect plants or plant cells from salinity, osmotic, and dehydration stress which method comprises modifying said plants or plant cells to produce a heterologous protein that contains a conserved DnaJ J-domain.

In another aspect, the invention provides a method to protect plants or plant cells from salinity, osmotic, and dehydration stress by modifying the plants or plant cells by coupling an endogenous nucleotide sequence encoding a protein that comprises a DnaJ J-domain to a promoter heterologous to said sequence operable in plants which is either also heterologous to the plants or plant cells or is a high expression promoter endogenous to said plant.

The ability of the methods of the invention to confer tolerance to salinity, osmotic, and dehydration stress is particularly helpful when combined with water-saving techniques in the culturing of plants that have been modified to be tolerant. Thus, it is possible to combine the methods of the invention with reduced irrigation or other methods to reduce water use in the culture of crops.

In still another aspect, the invention is directed to nucleic acid constructs for carrying out the foregoing methods. These constructs include nucleic acid transformation vectors which comprise a nucleotide sequence encoding a protein that comprises a DnaJ-J-domain operably linked to a promoter operable in plant cells. Such constructs also include transformation vectors which comprise sequences for homologous recombination or other means of insertion of a high expression level promoter into the genome of plants or plant cells.

In still other aspects, the invention includes transgenic plants and plant cells that have been modified as described above.

In still another aspect, the invention is directed to a method to identify successful transformants by enhanced expression of a protein that comprises a DnaJ-J-domain as a selection marker.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. $1 a-1 d$ show Northern blot analyses designed to detect mRNA encoding GmDNJ1 under salinity stress in salt tolerant (Wenfeng7) and salt sensitive (Union) soybean cultivars. FIG. $1 a$ shows Northern blots of Union leaf. FIG. $1 b$ shows Northern blots of Wenfeng 7 leaf. FIG. $1 c$ shows Northern blots of Union root. FIG. $\mathbf{1} d$ shows Northern blots of Wenfeng7 root: CK: control without treatment; T0.3: 0.3% $\mathrm{NaCl} ; \mathrm{T} 0.6: 0.6 \% \mathrm{NaCl} ; \mathrm{T} 0.9: 0.9 \% \mathrm{NaCl} . \mathrm{T} 1.2: 1.2 \% \mathrm{NaCl}$.

FIG. $2 a$ shows a Northern blot analysis of expression levels of GmDNJ1 at various times after flowering; FIG. $2 b$ shows the appearance of pods at these time periods: The results of Northern blots (a) and typical appearance of the pod during seed maturation (b) were shown.

FIG. 3 shows Northern blots of GmDNJ1 expression in four Arabidopsis transgenic lines in comparison to controls: Col-0: wild type; V7: transformant with empty vector; A-3-4, $\mathrm{M}-3-1, \mathrm{D}-3-2$ and $\mathrm{P}-3-6$: GmDNJ1 transgenic lines.

FIGS. $4 a$ and $\mathbf{4} b$ show the effects of osmotic stress (FIG. $4 a$) and salinity stress (FIG. $4 b$) on the phenotypes of wild type and transgenic Arabidopsis lines expressing the Arabidopsis ASN1 cDNA (as negative transgenic control) or GmDNJ1.

FIG. 5 is a graph that shows the effects of salinity and osmotic stresses on the fresh weight of wild type and transgenic Arabidopsis lines expressing the Arabidopsis ASN1 cDNA (as negative transgenic control) or GmDNJ1: Col-0: wild type; ASN1: transgenic line expressing the Arabidopsis ASN1 cDNA (as a negative transgenic control); A-3-4, M-31: transgenic lines expressing GmDNJ1. $\mathrm{N}=20$.

FIG. 6 shows Northern blots of GmDNJ1 in rice transgenic lines WT: wild type; other numbers: GmDNJ1 transgenic lines.

FIGS. $7 a$ and $7 b$ are photographs which contrast the response to salinity stress of GmDNJI transgenic lines (segregating population) and wild type rice.

FIGS. $8 a$ and $8 b$ show the effects of dehydration stress (FIG. 8a) and salinity stress (FIG. 8b) on the phenotypes of the untransformed wild type and transgenic rice lines expressing the G. max AS2 cDNA (as negative transgenic control) or GmDNJI: water was removed and then replenished (a) and salinity stress (200 mM NaCl) (b). WT: wild type; AS2: AS2 transgenic lines; other numbers: GmDNJ1 transgenic lines.
FIGS. $9 a$ and $9 b$ show the effects of dehydration stress and salinity stress on the survival rate of wild type and transgenic rice lines expressing the G. max AS2 cDNA (as negative transgenic control) or GmDNJ1: water was removed and then replenished (a) and salinity stress (200 mM NaCl) (b). WT: wild type; AS2: AS2 transgenic lines; other numbers: GmDNJ1 transgenic lines. $\mathrm{N}=12$.

FIGS. $10 a$ and $10 b$ show the effects of dehydration stress and salinity stress on the fresh weight of wild type and transgenic rice lines expressing the G. max AS2 cDNA (as negative transgenic control) or GmDNJ1: water was removed and then replenished (a) and salinity stress (200 mM NaCl) (b). WT: wild type; AS2: AS2 transgenic lines; other numbers: GmDNJ1 transgenic lines. $\mathrm{N}=12$.
FIGS. $11 a$ and $\mathbf{1 1} b$ show a comparison of the amino acid sequence of GmDNJ1 protein to known DnaJ proteins (FIG. 11a) (SEQ ID NOS:4-8) and the co-chaperone activity of purified GmDNJ1 (FIG. 11b) in form of GST-GmDNJ1 fusion proteins produced in E. coli cells: Mean values and standard errors of at least three determinations are shown. Luciferase activity in the presence of the Escherichia coli homologous system (lane 3) is set to 100%.

MODES OF CARRYING OUT THE INVENTION

It has been found that proteins comprising a DnaJ conserved J-domain motif are successful in conferring tolerance in plant cells and plants with respect to the stress factors of salinity, low osmotic potential, and dehydration. Plants and plant cells can exhibit this tolerance by virtue of transgenic modification to include expression systems which result in the production of such proteins. This is illustrated below in rice and in Arabidopsis plants, but is by no means limited to these examples. Any higher plant or cell of a higher plant is a suitable subject for the methods and materials of the present invention.

Salinity stress means that the growth substratum (including but not limited to soil and hydroponic systems) contains level of salts (including but not limited to $\mathrm{NaCl}, \mathrm{NaHCO}_{3}$, $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{Na}_{2} \mathrm{SO}_{4}$) that limit the growth of target plants. Osmotic stress means that the growth substratum contains substances (including but not limited salts) that will decrease water potential in the growth substratum. Dehydration stress means that the growth substratum contains water less than that required for optimal growth of target plants.

In order to provide the requisite protein, plant cells are modified to contain nucleotide sequences encoding the relevant protein, optionally operably linked to control sequences operable in plants, or integrated into the genome so as to be expressed under the control of endogenous control sequences. Nucleic acid constructs may contain control sequences operable in plants operably linked to the J-domain protein-encoding sequence, which control sequences can be selected to result in constitutive, tissue-specific or non-tissuespecific, or inducible expression. A wide variety of such control sequences is available in the art, and appropriate vectors
for genetic modification are also well known and, indeed, commercially available. Similarly, techniques for effecting genetic modification of plant cells and reconstituting intact plants are now well known in the art. A useful summary of the state of the art in this respect, including a reasonably comprehensive list of the types of plants and plant cells that can form the subjects of the present invention is found in U.S. Patent Publication 2004/0009476, published 14 Jan. 2004, incorporated herein by reference with respect to its disclosure of appropriate techniques for genetic manipulation of plants and the range of plants and plant cells to which these techniques may be applied.

Further, because the modified cells and plants of the invention are tolerant to stress caused by dehydration and/or high salinity stress, an expression system comprising a nucleotide sequence encoding the J-domain containing protein operably linked to control sequences operable in plants can be used as a selectable marker for successful transformation of cells. Successful transformants are more highly resistant and survive an applied stress for which the marker confers tolerance. Hence, successful transformants can be identified by virtue of their ability to survive such stress conditions.

As will be apparent from the discussion in the background section above, a protein whose expression is able to effect tolerance against salinity, osmotic, and dehydration stress must, at a minimum, contain a DnaJ-type J-domain. This domain is of approximately 60 amino acids, and is homologous to the conserved J-domains of type I (or A) DnaJ-like proteins. For purposes of definiteness, the degree of homology required is at least 80%, or 85% or 90% or 95% to that of the amino acid sequence at positions 13-77 of soybean GmDNJ1 as shown in FIG. $11 a$ and must contain the sequence histidine-proline-aspartic (HPD). (As apparent from FIG. 11 a, if GmDNJ1 were numbered independently, this region would be positions 12-77.)

In one embodiment, the protein, in addition to the DnaJtype J-conserved domain also contains a glycine/phenylalanine rich sequence similar to that characterizing DnaJ-type I(A) proteins and/or a (CXXCXGXG) 4 (SEQ ID NO:1) domain also characteristic of type I(A) DnaJ proteins.

In order to effect production of the desired DnaJ-like protein in plants or plant cells, these cells or plants may be modified using a recombinant expression vector containing a heterologous nucleic acid sequence that encodes the DnaJtype protein or may be modified by providing enhanced expression of an endogenous DnaJ-type J-domain containing protein-encoding gene. Such enhancement may be obtained by placing the nucleotide sequence representing the endogenous coding sequence on a vector wherein said coding sequence is in operable linkage with control sequences heterologous to said coding sequence which are able to effect high levels of expression of sequences under their control in plants or plant cells. Alternatively, the plants or plant cells may be modified to contain a transformation vector which comprises such powerful control sequences as well as additional nucleotide sequences that effect insertion of the control sequences into an operable linkage with an endogenous coding sequence for the desired DnaJ-like protein contained in the plant. Such sequences include, for example, sequences homologous to the endogenous DNA proximal to the coding sequence. The Cre-lox system may also be used. It will be apparent to those of ordinary skill that there are a variety of methods whereby the expression levels of the desired protein comprising at least a DnaJ-type J-domain may be obtained.

The ability of the methods of the invention to confer tolerance to salinity, osmotic, and dehydration stress is particularly helpful when combined with water-saving techniques in
the culturing of plants that have been modified to be tolerant. Thus, it is possible to combine the methods of the invention with reduced irrigation or other methods to reduce water use in the culture of crops.

The following examples and results confirm and illustrate the success of the methods and constructs of the invention. In the following examples, data were analyzed using the SPSS (ver. 12.0) statistical package. Samples exhibiting significant differences ($\mathrm{p}<0.01$ or $\mathrm{p}<0.05$) were indicated.

EXAMPLE 1

Expression of GmDNJ1 in Response to Salinity and Dehydration Stress

In this example, expression of GmDNJ1 in leaf and root of two soybean cultivars was studied in response to salinity stress. Two soybean germplasms, Wenfeng 7 (salt-tolerant) and Union (salt-sensitive), were irrigated with modified Hoagland's solution (4.5 mM KNO $\mathrm{mM} \mathrm{NH}_{4} \mathrm{NO}_{3}, 3.0 \mathrm{mM} \mathrm{MgSO} 4,1.2 \mathrm{mM}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}, 0.25$ $\mathrm{mM} \mathrm{KH}{ }_{2} \mathrm{PO}_{4}, 4.5 \mu \mathrm{M} \mathrm{MnSO}_{4}, 4.5 \mu \mathrm{M} \mathrm{ZnSO}_{4}, 1.5 \mu \mathrm{M}$ $\mathrm{CuSO}_{4}, 0.4 \mu \mathrm{M}\left(\mathrm{NH}_{4}\right)_{5} \mathrm{Mo}_{7} \mathrm{O}_{24}, 0.09 \mathrm{mM}$ Fe-EDTA, and 1.5 $\mu \mathrm{M} \mathrm{H}_{3} \mathrm{BO}_{3}$) and treated with 125 mM NaCl . Leaf and root samples were collected from 0 to 144 hours after treatment.

Northern blot analysis was performed on extracts of roots and leaves as previously described (Sambrook, J., et al., Molecular Cloning: A Laboratory Manual, Ed 3rd., Cold Spring Harbor Laboratory Press, New York, N.Y. (2001)). Antisense single-stranded DNA probes were labeled with digoxigenin (DIG) (Roche, Mannheim, Germany) (Finckh, U., et al., Biotechniques (1991) 10:35-38).

The results are shown in FIGS. $1 a-1 d$. The lanes represented by CK represent control without treatment, T0.3 represents $0.3 \% \mathrm{NaCl}, \mathrm{T} 0.6$ represents treatment with 0.6% $\mathrm{NaCl}, \mathrm{T} 0.9$ represents treatment with $0.9 \% \mathrm{NaCl}$ and T 1.2 represents treatment with $1.2 \% \mathrm{NaCl}$. Salinity stress led to an increase in the steady-state mRNA levels of GmDNJ1 in leaf of both cultivars, more dramatically shown in Union, confirming that the GmDNJI gene expression was induced by salinity stress. For Wenfeng7, the expression of GmDNJ1 in leaf was also induced, though to a lesser extent. The expression of GmDNJ1 in Wenfeng 7 leaf generally under non-stress conditions was higher than that in Union. Results for roots are shown in FIGS. $\mathbf{1} c$ and $\mathbf{1} d$ and are similar to those for leaf.

Correlation with seed maturation and inhibition was also studied, again, using extracts and analyzing by Northern blot. For seed maturation, 1,300 Union individuals were grown in soil supplemented with modified Hoagland's solution in an environment-controlled greenhouse. About 1,500 flowers were tagged at the first day after flowering by using different color thread. Soybean pods were collected at $17^{\text {th }}, 22^{\text {nd }}, 27^{7 h}$, $32^{n d}, 37^{\text {th }}, 42^{n d}, 47^{\text {th }}$ and $52^{\text {nd }}$ days after flowering.

The results are shown in FIG. 2. The Northern blot analysis shows that GmDNJ1 expression was induced from 17-37 days after flowering and then decreases slightly, as shown in FIG. $2 a$. FIG. $2 b$ shows the general appearance of the pods after flowering.

EXAMPLE 2

Transgenic Arabidopsis thaliana

The GmDNJ1 encoding sequence (SEQ ID NO:2) and deduced amino acid sequence (SEQ ID NO:3) are as follows:
GmDNJ1 sequence
1 ATGTTTGGGA GGGCACCGAA GAAGAGCGAT AATACGAGGT ACTACGAAAT
51 CCTCGGCGTC TCCAAGAACG CTTCGCAGGA TGATCTGAAG AAGGCTTACA
101 AGAAAGCCGC CATTAAGAAT CACCCCGACA AGGGCGGTGA TCCCGAGAAG
151 TTTAAAGAGC TGGCGCAAGC TTATGAGGTT CTGAGTGACC CTGAGAAGCG
201 TGAGATATAT GATCAGTATG GTGAAGATGC GCTTAAGGAA GGAATGGGTG
251 GTGGCGGTGG CCATGATCCA TTTGATATCT TTTCATCTTT CTTTGGCGGT
301 GGGAGTCCCT TTGGATCAGG TGGAAGTAGT CGAGGTAGGA GGCAGAGGCG
351 CGGAGAAGAC GTGGTTCACC CTCTCAAGGT CTCTTTGGAG GACCTTTATC
401 TTGGAACTTC CAAGAAGCTC TCCCTCTCCA GAAATGTTAT ATGCTCCAAG
451 TGCAGTGGCA AGGGTTCTAA GTCTGGTGCT TCGATGAAGT GTGCTGCTTG
501 TCAAGGAACT GGTATGAAGG TTTCTATAAG ACATCTTGGC CCATCCATGA
551 TTCAGCAAAT GCAGCATGCC TGCAATGAAT GTAAGGGTAC TGGAGAAACT
601 ATCAATGACA GAGATCGCTG CCCACAGTGC AAGGGAGAGA AGGTTGTGCA
651 GGAGAAGAAA GTCCTTGAAG TTATTGTAGA AAAGGGGATG CAGAATGGGC
701 AGAAGATAAC ATTCCCTGGC GAAGCTGATG AAGCGCCGGA CACAATTACT
751 GGGGATATCG TCTTTGTCCT TCAGCAGAAG GAACATCCCA AATTCAAAAG
801 AAAGGCTGAA GATCTTTTTG TAGAGCACAC TTTGTCCCTT ACCGAGGCCT
851 TGTGTGGCTT CCAATTTGTG CTGACTCACT TGGATAGCCG TCAGCTTCTT
901 ATTAAATCAA ATCCCGGGGA AGTTGTGAAG CCTGATTCAT ACAAGGCTAT
951 AAATGATGAG GGAATGCCCA TGTATCAGAG GCCATTTATG AAGGGGAAAC
1001 TTTACATTCA CTTCACTGTG GAGTTTCCAG ATTCTCTAAA CCCTGATCAA
1051 GTTAAGGCCT TGGAGGCTGT TCTGCCACCA AAGCCTTCTT CACAATTGAC
1101 AGACATGGAG CTGGATGAAT GTGAGGAAAC TACACTCCAT GATGTCAACA
1151 TGGAGGAGGA GACTAGGAGG AAGCAGCAAC AAGCTCAGGA GGCATATGAT
1201 GAGGATGATG ACATGCCTGG TGGTGCACAG AGGGTACAGT GCGCCCAGCA
1251 GTAA
MFGRAPKKSDNTRYYEILGVSKNASQDDLKKAYKKAAI KNHPDKGGDPEKFKELAQAYEV LSDPEKREIYDQYGEDALKEGMGGGGGHDPFDIFSSFFGGGSPFGSGGSSRGRRQRRGED VVHPLKVSLEDLYLGTSKKLSLSRNVI CSKCSGKGSKSGASMKCAGCQGTGMKVSIRHLG PSMIQQMOHACNECKGTGETINDRDRCPOCKGEKVVQEKKVLEVIVEKGMONGQKI TFPG EADEAPDTITGDIVFVLQQKEHPKFKRKAEDLFVEHTLSLTEALCGFQFVLTHLDSRQLL IKSNPGEVVKPDSYKAINDEGMPMYORPFMKGKLYIHFTVEFPDSLNPDOVKALEAVLPP KPSSQLTDMELDECEETTLHDVNMEEETRRKQQQAQEAYDEDDDMPGGAQRVQCAQQ-

A recombinant nucleic acid containing GmDNJ1 under the control of the constitutive Cauliflower Mosaic Virus 35S promoter was cloned into a binary vector (Brears, T., et al., Plant Physiol. (1993) 103:1285-1290), introduced into Agrobacterium, and transformed into A. thaliana using a vacuum infiltration protocol (Bechtold, N., et al., Arabidopsis Protocols, Humana Press Inc., Totowa N.J., (1993) 259-266). After selecting the transformants on antibiotic-containing media, successful integration of the transgene into the genome was verified by PCR screening using gene specific primers;

Northern blot analysis was performed to confirm the expression of the transgene in the transgenic plant lines. Seeds of T_{3} homozygous lines with single insert were obtained and used in subsequent physiological studies. Four GmDNJ1 homozygous transgenic lines of Arabidopsis thaliana were constructed. A-3-4 and M-3-1, which had comparatively high expression of GmDNJ1, were chosen for functional analysis. FIG. 3 shows comparative expression levels in the four transformants compared to untransformed control (Col-0) and a transformant with empty vector (V7), where, in both, expression is undetectable.

EXAMPLE 3

Stress Tolerance of Transgenic A. thaliana

The effects of osmotic and salinity stresses on the vegetative growth of A. thaliana were studied in this example.

The wild type Col-0, the ASN1 transgenic line (a transgenic A. thaliana expressing the ASN1 clone (Lam, et al, Plant Physiol (2003) 132:926-935) using the same vector as the GmDNJ1 constructs), and two GmDNJ1 transgenic lines (A-3-4 and M-3-1) were germinated on MS agar plates for 14 days and then transferred to sand culture. Plants were grown for 12 days in sand culture and irrigated with $1 / 8$ MS medium, followed by the addition of 15% PEG or 500 mM NaCl (in $1 / 8$ MS medium) for 6 days, in a growth chamber kept at about $22^{\circ} \mathrm{C}$. with a 16 h light (intensity about $130 \mu \mathrm{E}$) -8 h dark cycle.

Treatment with 15% PEG (osmotic stress) significantly retarded the growth of Col-0 and the ASN1 transgenic line while the GmDNJ1 transgenic lines could grow much better (FIGS. $4 a$ and 5).

In the same experiment as above, treatment with 15% PEG (osmotic stress) significantly reduced the fresh weight of $\mathrm{Col}-0$ and the ASN1 transgenic line while the GmDNJ1 transgenic lines could grow much better (FIGS. $4 b$ and 5).

EXAMPLE 4

Transgenic Oryza sativa

GmDNJ1 was cloned into a double T-DNA plasmid, pSB130 (from Dr. Qiaoquan Liu and Prof. Samuel Sun at the Chinese University of Hong Kong). This plasmid has two T-DNA, one harboring the hygromycin resistance gene (selectable marker) and the other possessing a multiple cloning site for target gene cloning. The construct was introduced into the parent rice line Nipponbare via Agrobacteria-mediated transformation methods. GmDNJ1 homozygous transgenic lines of rice were constructed. FIG. $\mathbf{6}$ shows expression levels of GmDNJ1 in five independent transgenic rice lines whereas in the parent Nipponbare, the expression is undetectable.

EXAMPLE 5

Stress Tolerance of Transgenic Oryza sativa

The effects of osmotic and salinity stresses on the vegetative growth of rice (Oryza sativa) was studied in this example.

After germination in the dark for 10 days, triplicate sets each containing the wild type parent, the AS2 transgenic line (a transgenic O. sativa expressing the AS2 clone using the same vector as the GmDNJ1 constructs) and five independent GmDNJ1 transgenic rice lines were grown in $1 / 2$ MS liquid medium for another 9 days, in a growth chamber kept at about $28^{\circ} \mathrm{C}$. with a 16 h light (intensity about $120 \mu \mathrm{E}$) -8 h dark cycle. The first group was treated with $1 / 2$ MS liquid medium supplemented with 200 mM NaCl for 2 days followed by irrigation of $1 / 2$ MS liquid medium for 2 days. Dehydration stress was introduced to another group by the removal of the
liquid growth medium for 16 hours followed by replenishment of $1 / 2$ MS liquid medium for 3 days. The control group was irrigated with $1 / 2$ MS liquid medium throughout the whole testing period.

Removal of liquid growth medium (dehydration stress) led to the initial rolling-up of leaves in both wild type and transgenic rice. Replenishment of $1 / 2$ MS liquid medium could rescue the GmDNJ1 transgenic lines but not the untransformed parent and the AS2 transgenic line (FIG. 8a). The recovery rates of GmDNJ1 transgenic lines under this treatment were significantly higher than that of the untransformed parent and the AS2 transgenic line (FIG. 9a). The resulting fresh weights of GmDNJ1 transgenic lines under this treatment were also significantly higher than that of the untransformed parent and the AS2 transgenic line (FIG. 10a).

Treatment of 200 mMNaCl (salinity stress) led to drooping of leaves and salt damage symptoms in both wild type and transgenic rice. Recovery in $1 / 2$ MS liquid medium could rescue the GmDNJ1 transgenic lines but not the untransformed parent and the AS2 transgenic line (FIG. 8b). The recovery rates of GmDNJ1 transgenic lines under this treatment were significantly higher than that of the untransformed parent and the AS2 transgenic line (FIG. $9 b$). The resulting fresh weights of GmDNJ1 transgenic lines under this treatment were significantly higher than that of the untransformed parent and the AS2 transgenic line (FIG. 10b).
The GmDNJ1 transgenic lines and the untransformed plant were also grown in the experimental field with high salt content. Some individual plants in the transgenic lines (segregating populations) survived while the untransformed plant all wilted and died (FIG. 7).

EXAMPLE 6

Co-Chaperone Activity of the GmDNJ1 Protein

Co-chaperone activity assay was performed by monitoring the activity of heat-denatured luciferase (Zmijewski, et al., J. Mol. Biol. (2004) 336:539-549).

The GmDNJ1 cDNA sequence was cloned into the expression vector pGEX-4T-1 (GE Healthcare) to form a chimeric construct, to produce Glutathione S-transferase (GST)-GmDNJ1 fusion protein in E. coli cells (bacterial strain used: BL23 (DE3)).

Firefly luciferase (Promega) was incubated for 10 min at $25^{\circ} \mathrm{C}$. in the presence of different combinations of DnaK, DnaJ, GrpE, GST-GmDNJ1 fusion protein, GST and bovine serum albumin (BSA). Luciferase was denatured for 10 min at $42^{\circ} \mathrm{C}$. and renatured by addition of 5 mM ATP and subsequent incubation at $25^{\circ} \mathrm{C}$. for 30 min . Luciferase activity was measured by using the Luciferase Assay System (Promega). Activity of luciferase in the presence of DnaK, DnaJ and GrpE (E. coli homologous chaperone system) was set to 100% for referencing.

GST-GmDNJ1 fusion proteins exhibited significant cochaperone activities mimicking that of the E. coli DnaJ pro55 tein. On the other hand, GST or BSA did not show the same kind of activities (FIG. 11 b).

```
<160> NUMBER OF SEQ ID NOS: 8
<210> SEQ ID NO 1
<211> LENGTH: }3
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
```

```
<220> FEATURE:
<223> OTHER INFORMATION: seed maturation DnaJ protein
<220> FEATURE:
<221> NAME/KEY: ZN_FING
<222> LOCATION: (1) .. (32)
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 2, 3,5,7,10, 11, 13, 15, 18,19, 21, 23, 26, 27, 29, 31
\ll 2 2 3 > ~ O T H E R ~ I N F O R M A T I O N : ~ X a a ~ = ~ a n y ~ a m i n o ~ a c i d ~
<400> SEQUENCE: 1
Cys Xaa Xaa Cys Xaa Gly Xaa Gly Cys Xaa Xaa Cys Xaa Gly Xaa Gly
Cys Xaa Xaa Cys Xaa Gly Xaa Gly Cys Xaa Xaa Cys Xaa Gly Xaa Gly
```

$<210>$ SEQ ID NO 2
<211> LENGTH: 1254
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Transgenic Arabidopsis thaliana
<220> FEATURE:
$<223>$ OTHER INFORMATION: GmDNJ1 encoding sequence
$<400>$ SEQUENCE: 2
atgtttggga gggcaccgaa gaagagcgat aatacgaggt actacgaaat cetcggcgtc 60
tccaagaacg ettcgcagga tgatctgaag aaggcttaca agaaagccgc cattaagaat 120
caccccgaca agggcggtga tcccgagaag tttaaagage tggcgcaagc ttatgaggtt 180
ctgagtgacc ctgagaagcg tgagatatat gatcagtatg gtgaagatgc gcttaaggaa 240
ggaatgggtg gtggcggtgg ccatgatcca tttgatatct tttcatcttt ctttggcggt 300
gggagtccct ttggatcagg tggaagtagt cgaggtagga ggcagaggcg cggagaagac 360
gtggttcacc ctctcaaggt ctctttggag gacctttatc ttggaacttc caagaagctc 420
tccctctcca gaaatgttat atgctccaag tgcagtggca agggttctaa gtctggtgct 480
tcgatgaagt gtgctggttg tcaaggaact ggtatgaagg tttctataag acatcttggc 540
ccatccatga ttcagcaaat gcagcatgcc tgcaatgaat gtaagggtac tggagaaact 600
atcaatgaca gagatcgctg cccacagtgc aagggagaga aggttgtgca ggagaagaaa 660
gtcettgaag ttattgtaga aaaggggatg cagaatgggc agaagataac attccetggc 720
gaagctgatg aagcgcegga cacaattact ggggatatcg tctttgtcct tcagcagaag 780
gaacatccca aattcaaag aaaggetgaa gatcttttg tagagcacac tttgtccett 840
accgaggcet tgtgtggctt ccaatttgtg ctgactcact tggatagccg tcagcttctt 900
attaaatcaa atccogggga agttgtgaag cetgattcat acaaggctat aaatgatgag 960
ggaatgccea tgtatcagag gccatttatg aaggggaaac tttacattca cttcactgtg 1020
gagtttccag attctctaaa ccctgatcaa gttaaggcct tggaggctgt tctgccacca 1080
aagccttctt cacaattgac agacatggag ctggatgaat gtgaggaaac tacactccat 1140
gatgtcaaca tggaggagga gactaggagg aagcagcaac aagctcagga ggcatatgat 1200
gaggatgatg acatgcetgg tggtgcacag agggtacagt gcgcccagca gtaa 1254
$<210>$ SEQ ID NO 3
$<211>$ LENGTH: 417
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Transgenic Arabidopsis thaliana

$<210>$ SEQ ID NO 6
$<211>$ LENGTH: 397
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: DnaJ protein HsP31689
$<400>$ SEQUENCE: 6

$<210>$ SEQ ID NO 8
$<211>$ LENGTH: 416
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: DnaJ protein SgBAA 35121
$<400>$ SEQUENCE: 8

The invention claimed is:

1. A method to protect plants or plant cells from salinity, osmotic, or dehydration stress which method comprises
a) identifying plants or plant cells that are likely to be subjected to salinity, osmotic, or dehydration stress;
b) modifying said plants or plant cells to produce a protein comprising a DnaJ-type J-domain;
wherein said modifying comprises transfecting said plants or plant cells with a nucleic acid molecule that comprises control sequences that effect high expression levels in said plants or plant cells operably linked to a nucleotide sequence that encodes a protein that comprises a DnaJ-type J-domain which encoding nucleotide sequence is heterologous to said control sequences, or wherein said protein is heterologous to the plant or plant cells;
wherein the protein further comprises, downstream from said J-domain, a DnaJ-type glycine/phenylalanine rich domain, and
downstream from said glycine/phenylalanine rich domain a (CXXCXGXG) $)_{4}$ (SEQ ID NO:1) zinc finger domain and wherein said protein is a Type I DnaJ protein; and
c) subjecting said modified plants or plant cells to salinity, osmotic, or dehydration stress.
2. The method of claim 1 , wherein the protein is GmDNJ1.
3. The method of claim 1 wherein said dehydration stress comprises applying water-saving cultivation method(s) to the modified plants.
4. A method to select for successful transformant plant cells or plants which method comprises
treating said plant cells or plants with a recombinant vector comprising a nucleic acid sequence encoding, as a selectable marker, a Type I DnaJ protein comprising a DnaJ-domain, a DnaJ-type glycine/phenylalanine rich domain, and a (CXXCXGXG) 4_{4} (SEQ ID NO:1) zinc finger domain said sequence operably linked to control sequences for expression; followed
by applying salinity, osmotic, or dehydration stress to said plant cells or plants,
whereby plant cells or plants that are resistant to said stress are selected as successfully transformed.
5. The method of claim 4, wherein the selectable marker protein is GmDNJ1.
